mjlab.managers#

Environment managers for actions, observations, rewards, terminations, commands, and curriculum.

Environment managers.

Classes:

CommandManager

CommandTerm

Base class for command terms.

NullCommandManager

Placeholder for absent command manager that safely no-ops all operations.

CurriculumManager

NullCurriculumManager

Placeholder for absent curriculum manager that safely no-ops all operations.

CommandTermCfg

Configuration for a command generator term.

class mjlab.managers.CommandManager[source]#

Bases: ManagerBase

Methods:

__init__(cfg, env)

debug_vis(visualizer)

get_active_iterable_terms(env_idx)

reset(env_ids)

Resets the manager and returns logging info for the current step.

compute(dt)

get_command(name)

get_term(name)

get_term_cfg(name)

Attributes:

__init__(cfg: dict[str, CommandTermCfg], env: ManagerBasedRlEnv)[source]#
debug_vis(visualizer: DebugVisualizer) None[source]#
property active_terms: list[str]#
get_active_iterable_terms(env_idx: int) Sequence[tuple[str, Sequence[float]]][source]#
reset(env_ids: Tensor | None) dict[str, Tensor][source]#

Resets the manager and returns logging info for the current step.

compute(dt: float)[source]#
get_command(name: str) Tensor[source]#
get_term(name: str) CommandTerm[source]#
get_term_cfg(name: str) CommandTermCfg[source]#
class mjlab.managers.CommandTerm[source]#

Bases: ManagerTermBase

Base class for command terms.

Methods:

__init__(cfg, env)

debug_vis(visualizer)

reset(env_ids)

Resets the manager term.

compute(dt)

Attributes:

__init__(cfg: CommandTermCfg, env: ManagerBasedRlEnv)[source]#
debug_vis(visualizer: DebugVisualizer) None[source]#
abstract property command#
reset(env_ids: Tensor | slice | None) dict[str, float][source]#

Resets the manager term.

compute(dt: float) None[source]#
class mjlab.managers.NullCommandManager[source]#

Bases: object

Placeholder for absent command manager that safely no-ops all operations.

Methods:

__init__()

debug_vis(visualizer)

get_active_iterable_terms(env_idx)

reset([env_ids])

compute(dt)

get_command(name)

get_term(name)

get_term_cfg(name)

__init__()[source]#
debug_vis(visualizer: DebugVisualizer) None[source]#
get_active_iterable_terms(env_idx: int) Sequence[tuple[str, Sequence[float]]][source]#
reset(env_ids: Tensor | None = None) dict[str, Tensor][source]#
compute(dt: float) None[source]#
get_command(name: str) None[source]#
get_term(name: str) None[source]#
get_term_cfg(name: str) None[source]#
class mjlab.managers.CurriculumManager[source]#

Bases: ManagerBase

Methods:

__init__(cfg, env)

get_term_cfg(term_name)

get_active_iterable_terms(env_idx)

reset([env_ids])

Resets the manager and returns logging info for the current step.

compute([env_ids])

Attributes:

__init__(cfg: dict[str, CurriculumTermCfg], env: ManagerBasedRlEnv)[source]#
property active_terms: list[str]#
get_term_cfg(term_name: str) CurriculumTermCfg[source]#
get_active_iterable_terms(env_idx: int) Sequence[tuple[str, Sequence[float]]][source]#
reset(env_ids: Tensor | slice | None = None) dict[str, float][source]#

Resets the manager and returns logging info for the current step.

compute(env_ids: Tensor | slice | None = None)[source]#
class mjlab.managers.NullCurriculumManager[source]#

Bases: object

Placeholder for absent curriculum manager that safely no-ops all operations.

Methods:

__init__()

get_active_iterable_terms(env_idx)

reset([env_ids])

compute([env_ids])

__init__()[source]#
get_active_iterable_terms(env_idx: int) Sequence[tuple[str, Sequence[float]]][source]#
reset(env_ids: Tensor | None = None) dict[str, float][source]#
compute(env_ids: Tensor | None = None) None[source]#
class mjlab.managers.CommandTermCfg[source]#

Bases: object

Configuration for a command generator term.

Attributes:

Methods:

__init__(*, class_type, resampling_time_range)

class_type: type[CommandTerm]#
resampling_time_range: tuple[float, float]#
debug_vis: bool = False#
__init__(*, class_type: type[CommandTerm], resampling_time_range: tuple[float, float], debug_vis: bool = False) None#